On the periodic orbit bifurcating from a zero Hopf bifurcation in systems with two slow and one fast variables
نویسندگان
چکیده
The Hopf bifurcation in slow-fast systems with two slow variables and one fast variable has been studied recently, mainly from a numerical point of view. Our goal is to provide an analytic proof of the existence of the zero Hopf bifurcation exhibited for such systems, and to characterize the stability or instability of the periodic orbit which borns in such zero Hopf bifurcation. Our proofs use the averaging theory.
منابع مشابه
HOPF BIFURCATION CONTROL WITH PD CONTROLLER
In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...
متن کاملSub-Hopf/fold-cycle bursting and its relation to (quasi-)periodic oscillations
We investigate the emergence of bursting oscillations and their relation to (quasi-) periodic behaviour in two different model systems, a pH oscillator and a calcium oscillator. Both systems are described by 3-dimensional ODE systems and follow different ‘routes’ to bursting oscillations as parameters are varied. In the first part, we exploit the slow-fast structure of the 3-dimensional ODE sys...
متن کاملBIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF
In this paper, first we discuss a local stability analysis of model was introduced by P. J. Mumby et. al. (2007), with $frac{gM^{2}}{M+T}$ as the functional response term. We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef. Next, we consider this model under the influence of the time delay as the bifurcat...
متن کاملHopf bifurcations to quasi - periodic solutionsfor the two - dimensional Poiseuille owBy
This paper studies various Hopf bifurcations in the two-dimensional Poiseuille problem. For several values of the wavenumber , we obtain the branch of periodic ows which are born at the Hopf bifurcation of the laminar ow. It is known that, taking 1, the branch of periodic solutions has several Hopf bifurcations to quasi-periodic orbits. For the rst of them, previous calculations seem to indicat...
متن کاملNon-linear waves in a ring of neurons
In this paper, we study the effect of synaptic delay of signal transmission on the pattern formation and some properties of non-linear waves in a ring of identical neurons. First, linear stability of the model is investigated by analyzing the associated characteristic transcendental equation. Regarding the delay as a bifurcation parameter, we obtained the spontaneous bifurcation of multiple bra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied Mathematics and Computation
دوره 232 شماره
صفحات -
تاریخ انتشار 2014